Aerostar Pilot Training

Aerostar Recurrent Course (PA60-600, 601,601P,602P,700P)

Enrollment Prerequisites

- 1. A pilot may enroll for Aerostar Recurrent training, provided they hold a private pilot certificate, commercial pilot certificate, ATP certificate, ICAO recognized license.
- 2. Holds an instrument airplane rating or an ATP certificate with an airplane rating.
- 3. Holds an airplane multiengine land rating.
- 4. Has successfully completed an initial transition course for Aerostar series aircraft at a certificated pilot school within the last 36 months or has logged 100 hours as PIC in PA60 series aircraft of which 50 hours is within last 12 months *
- 5. Meets the recent flight experience requirements of 61.57 (a) (1) for take off and landings in the preceding 90 days. **

Description of Course: The Aerostar Recurrent Course is scheduled for three days and consist of the following minimum programmed hours:

Classroom training	0. 8
FTD training	8.0
Post/Preflight Brief	

Course Objectives:

Upon the completion of this course, the pilot will have the necessary knowledge and skills to demonstrate that he/she meets the requirements of FAR 61.56(e) for the Flight Review, 61.57(c)(i-iii) for recent Flight Experience – Instrument, and 61.57(d)(1) for the Instrument Proficiency Check will be met. The student will review the aircraft systems, the use of the systems, controls, normal and abnormal procedures for the aircraft.

1. Classroom Training

General Operating Subjects –6 hours

- A. Standard Operating Procedures.
- 1. Objectives
- 2. Departure S.O.P.s (Take-off Planning Single and Multi-Engine)
- 3. Enroute S.O.P.s
- 4. Arrival S.O.P.s
- 5. Approach Chart Review
- 6. Altitude Calls
- 7. Landing S.O.P.s
- 8. Checklist Usage

^{*} Requirement may be waived for special circumstances by Chief Flight Instructor

** The prerequisite for 61.57 (a) (1) are not required if 61.56 (e) will not be issued

B. Low Visibility Approaches

- 1. Objectives
- 2. Requirements For Descending Below MDA or DH
- 3. Flight Visibility VS. Surface Visibility
- 4. Ceiling Reports
- 5. Precision VS. Non-Precision Approaches
- 6. Lights, Pavement, Paint
- 7. Normal Descent Rates and Maneuvers
- 8. The Missed Approach
- C. **Multi-Engine Departure** (Multi-Engine IFR Currency Course Only)
- 1. Objectives
- 2. Flight Instrument Configuration
- 3. Restarting
- 4. Procedures For Initial Engine-Out
- 5. Three Segments of Departure
- 6. The 60 Mile Approach
- 7. Pre-Take-Off Briefing

D. ATC and Emergencies

- 1. Objectives
- 2. ATC's and FAA's Role in Reporting Emergencies
- 3. Where To Go in an Emergency
- 4. When to Declare an Emergency
- 5. Maximizing ATC's Assistance

E. Weather Avoidance

- 1. Objectives
- 2. Order and Methods
- 3. Pre-Flight Weather Briefing
- 4. Radar Summaries
- 5. Ground and Airborne Weather Radar
- 6. Turbulence Probability Chart
- 7. Conclusion

F. FAR's 61 & 91

- 1. Recency of experience
- 2. Pilot privileges
- 3. Pilot logbooks
- 4. General operating and flight rules
- 5. VFR requirements
- 6. IFR requirements

Completion Standard

The student will have completed this lesson by achieving a score of 70% or better on each end of lesson test and corrected it to 100%

Aircraft Systems Review

2 hours

A. General

- a. Pilots Operating Handbook
- b. Airframe
- c. Engines
- d. Propellers
- e. Fuel
- f. Oil
- g. Maximum Certified Weights

B. Limitations

- a. Authorized Operations
- b. Flight Load Factor
- c. Airspeed Limitations
- d. Maximum Operating Altitude Limit
- e. Engine Limitations
- f. Weight Limits & C.G.
- g. Instrument Dial Markings
- h. Electrical System Load Limits
- i. Fuel Limitations
- i. Placards

C. Powerplant

- a. Engine Controls
 - i. Throttle Control
 - ii. Propeller Control
 - iii. Mixture Control
- b. Air Induction System
- c. Engine Instruments
- d. Engine Oil System
- e. Ignition System
- f. Fuel Injection System
- g. Engine Cooling
- h. Turbocharging System

D. Propeller System

- a. Governors
- b. Centrifugal Latching Pins

E. Pneumatic System

- a. Pitot Pressure
- b. Static Pressure System
- c. Vacuum System
- d. Flight Instruments
- e. Suction Gauge
- f. Inflatable Cabin door seal

F. Control Systems

- a. Primary Flight Controls
- b. Trim System
- c. Hydraulic System

d. Aux hydraulic pump

G. Landing Gear & Brakes

- a. Landing Gear Position Lights
- b. Warning Horn
- c. Squat switch
- d. Emergency extension

H. Electrical System

- a. Battery and Alternator
- b. D.C. bus system
- c. Voltammeter
- d. Lighting System

I. Fuel System

- a. Wing Tanks
- b. Fuselage Tanks
- c. Fuel Selector switches
- d. Fuel shutoff valve
- e. Crossfeed system
- f. Auxiliary Fuel Pump Switches
- g. Fuel Quantity Gage
- h. Fuel Low Level Warning Light

J. Environmental Systems

- a. Cabin Air System
 - i. Heating
 - ii. Air Conditioning system
- b. Cabin Pressurization System
 - i. Pressurization System
 - ii. Bleed Air System
 - iii. Cabin Pressurization Controls
- c. Oxygen System

K. Ice Protection

- a. Electrical Windshield
- b. Propeller De-Ice System
- c. Wing De-Ice Boot System

L. Performance Envelope

- a. Maximum Takeoff Weight
- b. Accelerate Stop Graphs
- c. Accelerate Go Graphs
- d. Take-off Distance
- e. Landing Distance

M. Weight and Balance

- a. Definitions
- b. Basic Empty Weight
- c. Useful Load Weights
- d. Baggage
- e. Occupants
- f. Fuel
- g. Moments Limits vs. Weight

- N. Flight Planning
 - a. Time, Fuel and Distance Climb
 - b. Time, Fuel and Distance to Descend
 - c. Normal Cruise Power
 - d. Economy Cruise Power
 - e. Holding Time

Completion Standard

Completion Standards. This lesson will be successfully completed when, by oral examination the student displays a basic understanding of the aircraft systems and instruments.

Flight Training Device FTD Lessons

•

Lesson 1 2 Hours

Objective: Introduce student to simulator. Demonstrate and teach normal procedures and use of checklist for PA60 series aircraft

Preflight discussion

Before Starting Engines Checks

- a. Airspeeds for Safe operation
- b. Electrical System Checks
- c. Fuel Quantity & Selectors
- d. Annuciator Lights Check
- e. Landing Gear Handle & Lights

Normal Engine Start

Before Taxi Checks

- a. Aux Fuel Pumps
- b Charging Instruments Checked
- c. Vacuum System Check
- d Lights
- e. Flight Instruments

Before Take-off

- a. Engine Runup
- b. Ice Protection
- c. Pressurization set
- d. Trim set
- f. Flaps set

Maneuvers:

Normal Take-off

- (a) Climb (power settings)
- (b) Straight and Level (power Settings)
- (c) Shallow, Medium, Steep turns
- (d) Takeoff and departure stalls
- (e)Approach to landing stalls
- (f) Minimum controllable airspeed

- (g) VMC demonstration
- (h)VOR Tracking

Before Landing Checks

- (a) Non precision instrument approach via procedure turn (power settings & configurations)
- (b) Normal Landing

After Landing Shut down and Securing

Post flight critique and preview of next lesson.

Completion standards: Student will use checklists Communicate in timely manner Use appropriate power settings maintain a/c control +/-100ft +/-10 kts +/-10 hdg

.Lesson 2 2 hours

Objective: Demonstrate instrument proficiency FAR 61.57 (d) or meet instrument experience FAR 61.57 (c). With the use of checklist accomplish all normal procedures and checks. Learn abnormal procedures and the use of emergency checklist.

Events: IFR local flight

Before Starting Engines Checks

- f. Airspeeds for Safe operation
- g. Electrical System Checks
- h. Fuel Quantity & Selectors
- i. Annuciator Lights Check
- j. Landing Gear Handle & Lights

Normal Engine Start

Before Taxi Checks

- a. Aux Fuel Pumps
- b Charging Instruments Checked
- c. Vacuum System Check
- d Lights
- e. Flight Instruments

Before Take-off

- a. Engine Runup
- b. Ice Protection
- c. Pressurization set
- d. Autopilot Checks
- e. Trim set
- f. Flaps set

Maneuvers:

- a) Normal Take-off
- b) Climb
- c) Instrument Approaches *
 - 1. Nonprecision VOR
 - 2. Nonprecision GPS
 - 3. Nonprecision NDB
 - 4. Precision ILS

- 5. Approach gyro failure
- 6. Airborne Holding

Before Landing Checks

- a) Normal Landing
- b) After Landing Shut down and securing

The number and type will vary to be a representative number of tasks required by the instrument rating practical test

Abnormal Events

Conditions: Position Simulator in level cruise flight

Abnormal & Emergencies

- a) Engine driven fuel pump failure
- b) Alternator failure
- c) Blocked static source
- d) Avionics bus failure
- e) Induction air icing
- f) Loss of oil pressure
- g) Fuel Crossfeed (one engine inop)
- h) Smoke in cockpit
- The abnormal events should be completed as an instructional event to the student.
 After completing each event the simulator should have all faults corrected before proceeding to the next event.

Completion standards same as Instrument Rating Practical Test Standards as outlined in FAA Practical Test Standards Publication. The abnormal events are instructional only

Lesson 3 2 hours

Objective: Scenario Based Instructional Flight, gain experience in abnormal situations. Practice loss of engine power on take-off. IFR flight from ALN to UIN and then a second leg from UIN to ARR

Leg 1: ALN to UIN

Events:

Before Starting Engines Checks

- k. Airspeeds for Safe operation
- 1. Electrical System Checks
- m. Fuel Quantity & Selectors
- n. Annuciator Lights Check

^{*}Not all approaches have to be flown.

o. Landing Gear Handle & Lights

Normal Engine Start

Before Taxi Checks

- a. Aux Fuel Pumps
- b Charging Instruments Checked
- c. Vacuum System Check
- d Lights
- e. Flight Instruments

Before Take-off

- a. Engine Runup
- b. Ice Protection
- c. Pressurization set
- d. Autopilot Checks
- e. Trim set
- f. Flaps set

Maneuvers:

- 1. Take-off Power Failure below Vr
- 2. Take-off Power Failure above Vr

note: after practicing power loss event on take-off give both engines back and resume a normal climb to cruise altitude

- 3. Normal Climb to cruise altitude
- 4. Smoke in Cockpit
- 5. Loss of Pressurization & Emergency Descent
- 6. Cabin Over Pressure

Note; the abnormal events should be completed as instructional events to the student. After completing each event the simulator should have all faults corrected before proceeding to the next event. After completion of these events resume leg 1 inbound to UIN

- 7. Normal descent
- 8. Before Landing Checks
- 9. VOR 4 Approach at UIN full procedure
- 10. Normal Landing
- 11. After Landing Shut down and securing

Leg: 2 UIN to MDW

Events:

Before Starting Engines Checks

- p. Airspeeds for Safe operation
- q. Electrical System Checks
- r. Fuel Quantity & Selectors
- s. Annuciator Lights Check
- t. Landing Gear Handle & Lights

Normal Engine Start

Before Taxi Checks

- a. Aux Fuel Pumps
- b Charging Instruments Checked
- c. Vacuum System Check
- d Lights
- e. Flight Instruments

Before Take-off

- a. Engine Runup
- b. Ice Protection
- c. Pressurization set
- d. Autopilot Checks
- e. Trim set
- f. Flaps set

Maneuvers:

- 1. Normal Take-off
- 2. Normal Climb to Flight Levels
- 3. Cruise
- 4. Normal descent
- 5. Instrument approach
- 6. Landing
- 7. After Landing shut down and securing

Completion Standard: Scenario Based Instructional Flight No Jeopardy The abnormal events should be completed as an instructional event to the student.

Lesson 4 2 hours

Objective: Scenario Based Instructional Flight, gain experience in unusual or abnormal procedures. IFR flight MDW to DEC

Events:

Before Starting Engines Checks

Engine Start

Before Taxi Checks

Before Take-off Checks

Maneuvers:

- 12. Normal Take-off
- 13. Normal Climb
- 14. Enroute Cruise
- 15. Flight Instrument Failure
- 16. Normal descent
- 17. Before Landing Checks
- 18. Instrument approach
- 19. Normal Landing
- 20. After Landing Shut down and securing

Additional Abnormal Events (* indicates training items the instructor has the option to review as time permits)

1. Normal Take-off

- 2. Normal Climb
- 3. Enroute Cruise
- 4. Landing Gear fails to extend *
- 5. Communication failure *
- 6. Normal descent/ Emergency descent *
- 7. Unplanned holding *
- 8. Before Landing Checks
- 9. Instrument approach
- 10. Normal Landing
- 11. After Landing Shut down and securing

Completion Standard: Scenario Based Instructional Flight No Jeopardy The abnormal events should be completed as an instructional event to the student

Optional Differences Training:

Objective: To review and provide differences knowledge to the pilot that will be flying more than one model in this series of aircraft. or fly's an aircraft in another series.

Lesson 1 Classroom

2 hours

- 1. General Specifications
- 2. Limitations
- 3. Powerplant
- 4. Landing Gear
- 5. Flight Controls
- 6. Environmental Systems
- 7. Electrical System
- 8 Fuel System
- 9 Normal Procedures
- 10.Emergency Procedures
- 11 Performance Charts

Completion Standard

Completion Standards. This lesson will be successfully completed when, by oral examination the student displays a basic understanding of the aircraft systems and instruments.

Lesson 2 Flight Training Device FTD **

2 hours

Objective: Demonstrate and teach normal and abnormal procedures and use of checklist for other aircraft.

- 1. Before Starting Engines Checks
- 2. Engine Start
- 3. Before Taxi Checks
- 4. Before Take-off Checks
 - 1. Normal Take-off
 - 2. Normal Climb

- 3. Enroute Cruise
- 4. Landing Gear fails to extend *
- 5. Communication failure *
- 6. Normal descent/ Emergency descent *
- 7. Unplanned holding *
- 8. Engine failure *
- 9. Electrical System failures *
- 10. Fuel System Crossfeed *
- 11. Before Landing Checks
- 12. Instrument Approach
- 13. Normal Landing
- 14. After Landing shut down and securing

^{**} FTD lesson is for pilots doing differences training for another make and model aircraft series that they currently fly

^{*}Abnormal Events (* indicates training items the instructor has the option to review as time permits)